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A simple, stochastic model is developed of an asexual biological population that 
is undergoing natural selection. It is then observed that the size of the pop- 
ulation, like the temperature parameter in the simulated annealing algorithm, is 
a measure of the amount of randomness to be allowed in the system. Exploiting 
the formal analogy between the two processes, it is shown that the distribution 
of different types of organisms in the population model converges to a 
stationary distribution if the population is growing more slowly than O(ln t) 
("annealing"), but can fail to converge at all if the population is growing faster 
than O(ln t) ("quenching"). The results may be related to the "historical 
accidents" that permeate biological structures. 

KEY WORDS: Evolutionary theory; natural selection; simulated annealing; 
dynamic phase transitions. 

1. I N T R O D U C T I O N  

The theory of natural selection that forms the basis for the modern theory 
of biological evolution consists of two distinct subprocesses: random 
variation in biological fitness and differential reproductive success based on 
this variation. ~1) Nonspecialists in evolutionary theory often have difficulty 
with these ideas because the simple physical systems that are more familiar 
to them tend to lose, rather than gain, complexity as time progresses. They 
argue that, if mutation is truly a random process, then harmful mutations 
must occur. One would think that random perturbations of a complex 
biological system would almost certainly interfere with its functioning in 
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much the same way as random replacement of  instructions would destroy 
the coherence of most computer programs. Certainly, many of the human 
mutations that produce qualitative changes lead to either "birth defects," 
"hereditary diseases," or "cancer." On the other hand, true improvements 
in fitness--superior strength, intelligence, or acuity, for example--seem to 
be quantitative changes that may not represent mutations at all. Another 
apparent problem with natural selection is that truly useful evolutionary 
adaptations, such as the development of wings from arms, must have taken 
many generations. If these changes are to be explained by natural selection, 
then each of the transitional organisms must be biologically fitter than their 
competitors. In other words, even half a wing must give the organism a 
selective advantage before the full wing can develop. 

One way of restating many of the objections given above is to note 
that the "space" of possible biological organisms almost certainly contains 
many local fitness maxima. It is well known that finding the global 
maximum in problems with many local maxima is difficult, especially with 
the local search strategy that is implicit in natural selection. It is therefore 
hard to see how evolution can produce the best of all possible organisms. 
On the other hand, it is hard to argue that evolution does not exhibit some 
optimum-seeking behavior. In particular, there is an intriguing resemblance 
between simulated annealing, a Monte Carlo optimization procedure, and 
natural selection. There are probably many natural selection models that 
share features with annealing (see, for example, Ref. 2 for a discussion of 
the relationship between annealing and a deterministic model of natural 
selection due to Eigen(3)). For each, the fundamental similarity is that they 
are nonstationary processes that are regulated by order parameters that are 
themselves altered by the dynamics of the process. It is the purpose of this 
paper to explore this similarity by means of a particular selection model to 
be discussed below. Using methods that are useful in proving global con- 
vergence of the simulated annealing algorithm, I show that the relative fre- 
quencies of the various species in a model system to be described below can 
fail to achieve a stationary distribution if the population is growing faster 
than logarithmically in time, but that a stationary distribution is achieved if 
the population is growing more slowly in time. This is the dynamic phase 
transition promised in the title of this paper. I then describe conditions 
under which the stationary distribution of the relative frequencies does 
indeed have unit "probability mass" associated with the globally fittest 
species. The presentation also includes some thoughts about what these 
results might have to do with real biological systems. 
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2. THE SELECTION MODEL.  A FINITE STATE, 
NONSTATIONARY M A R K O V  CHAIN 

I start by describing the model of natural selection to be used in the 
subsequent discussions. Although the model might seem simplistic, it is in 
the spirit of other work in the field, most notably that of Gillespie. (4) I 
choose to consider the present model, rather than the better known 
Wright-Fisher diffusion model, for two reasons: First, I wish to consider 
the population dynamics of a large number of species under the influence of 
both mutation and selection, for which the Wright-Fisher theory is 
mathematically intractable. Second, the Wright-Fisher theory is strictly 
justifiable only if the selective advantage is on the order of the reciprocal of 
the population size. Because I plan to study the dependence of the 
dynamics in the limit of large population size, the Wright-Fisher theory 
would only apply if the selective advantages under consideration approach 
zero. However, the reader familiar with the Wright-Fisher theory will note 
that the results of that theory are recoverable from the present model upon 
appropriate rescaling and by taking the appropriate limits. I also note that 
the details of the model are important only in deriving a single formula, the 
probability that a species s, initially present in small numbers, eventually 
takes over the population. I present an argument that this formula agrees 
qualitatively with that derived from the more detailed and generally 
accepted Wright-Fisher diffusion model. 

The present consists of a large, but finite number of different types of 
asexually replicating entities (i.e., different asexual "species"). With each 
species s we associate a specific value of a fitness parameter r,. If each 
species were allowed to replicate without constraint, r, would be the rate 
constant for the exponential growth that would occur. However, a central 
feature of the model (and real living systems) is that constraints are 
present; in particular, we assume that these constraints impose a carrying 
capacity of N(t) organisms on the supporting ecosystem. We will assume 
that N(t) increases slowly with time--so slowly, in fact, that N can be 
treated as essentially constant over the time period required for a mutation 
to either become fixed in the population or disappear from it. (This 
situation might arise, for example, when a series of mutations slowly allows 
an increase in a species' resource utilization.) We include the effects of 
mutation in the model by associating with each pair of species s and s' a 
small probability #s,," that an attempted replication of an s individual 
produces an s' individual instead. We note that the biologically interesting 
case is when #s,s, is allowed to be zero for certain choices of s and s'. 
Because mutation is assumed to be such a rare event relative to the 
fixation/disappearance time for mutations, all individuals in the population 
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will almost all of the time be of the same species. The mutation process can 
therefore be approximated by a sequence of N independent and identically 
distributed Bernoulli trials on the N individuals in the population, each 
with success probability #s,s,. 

We now are ready to derive the "acceptance function" A(s, s'), which 
is the probability that species s' takes over the population after s, given 
that mutations to s' occur. We assume that, initially, each of the N 
organisms in the population are of species s, and that, due to random 
mutation or migration, some small number of organisms of one other type 
s' are introduced into the population. We make two additional simplifying 
assumptions: First, we assume that the only time that mutation or 
migration takes place is when mutants or migrants are introduced into a 
previously "pure" population. (This assumption, which is perhaps less 
natural than that of a constant mutation rate for all time, including those 
times when the population is heterogeneous, deserves some discussion. One 
possible justification for the former assumption is that the environment is 
transiently mutagenic, as would be the case, for example, during unusually 
pronounced solar or cosmic ray activity. Alternatively, we could imagine 
that migration can only take place at certain rare intervals, because, for 
example, a land bridge, an unusually long draught, etc., make possible the 
crossing of normally impassible bodies of water.) We assume further that 
we can approximate the number of new organisms introduced, which is 
binomially distributed, by its expected value #s,s,N. The numbers of wild- 
type individuals Xs(t) and mutant individuals Xs,(t), that appear in the 
population subsequently is assumed to be given by a birth-and-death 
process that conserves the total number N of organisms in the population. 
In some small time interval dt the organisms in state s each have 
probability r, dt of reproducing, thereby increasing their number by one. 
Similarly, the organisms in state s' each have probability r,, dt of 
reproducing. As always in such situations, it is presumed that dt is so short 
that at most one of these events happens in the time interval dt. In order to 
preserve the total number of organisms, one of the N organisms currently 
in the population is selected at random to die at the same instant that the 
new organism is born. We can then derive a system of differential equations 
that describes the time evolution of 

P,( t )  = Pr{Xs( t )  = n } 

We observe that these probabilities change only because an organism of 
type s is replaced by one of type s' and vice versa. We have, for all 
0 < n < N ,  



Model of Natural Selection 1015 

and 

Pr{type s organism replacing 

one of type s' in dt l X,(  t ) = n } 

= )~ = rsn(1 - - n / N )  dt 

Pr{s' organism replacing s organism in dt[Xs( t )  = n } 

= / / n  

= rs,(N--  n) (n /N)  dt 

= rs,n (1 - n /N)  dt, 0 < n < N 

When n = 0 or n = N, it is impossible for the population to change, so that 
)~o = / t o  = ' ) tN= #N ~-0. With explicit expressions for 2. and #,, in hand for 
all n between 0 and N, we can substitute in the well-known evolution 
equations for birth-and-death processes, (5) 

dPo(t)/dt = -)ooPo(t)  + 12, Pl(t) 

d P n ( t ) / d t = 2 n _ , P , ,  ~ ( t ) - - (2 .+ l~n )Pn( t )+ l~n+lPn+l ( t ) ,  0 < n < N  

to obtain 

dt = r,, P l ( t )  

d P n ( t ) - r s ( n - 1 ) ( 1 - f f - ~ N 1 )  P ' d t  - l ( t ) - ( r ' + r " ) n ( ~ - - ~ )  P~(t) 

+ r ~ , ( n + l ) ( 1 - n + l )  P ~ + I ( t ) ' N  0 < n < N  

dPu( t )  N - -  1 
dt = r s ~  P N - I ( t )  

Our primary interest in these equations is the computation of 
limt~ oo Po(t), the probability of eventual extinction of the wild type (or 
eventual takeover by the mutant). This probability turns out to be easy to 
compute by a consideration of the "embedded random walk." This is the 
random walk obtained from the birth-and-death process by forgetting 
about time. This random walk has transition probabilities' (s~ 

Ps,s, = Pr{taking one step to the right starting at n} 

~t. n F s 

2~+#n  r s+r , ,  
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and 

qs,s, = l - Ps,s, 

= Pr { taking one step to the left starting at n } 

#n r,, 

2 n + #~  r s + r, ,  

The probability of fixation of the mutation in the population is then given 
by the well-known gambler's ruin formula, (6) 

Pr{fixation by mutant } 

= 1 - Pr { extinction of mutant } 

(qs , , , /p , , s , )  N - ( S s , s , / P s , s , )  u,,s'N 
= 1  

(q , , , , /ps , , , )  N - 

( r s / r , , )  ~ ' . ' ' N -  1 

( r  j r , , )  N -  1 

Note that #s.s' is typically much smaller than 1 / N  and that r s ~ r~.,. These 
observations justify the two time scales that are employed in this analysis. 
In any case, it is this last expression that is the acceptance function 
A N ( S , S '  ). 

When r s -  r,, = O ( 1 / N ) ,  one can also model the differential growth of 
the mutant and wild-type populations as a diffusion process 
(Wright-Fisher diffusion). This model is well known in the literature of 
population biology; see references such as Ref. 7, from which the needed 
result will be quoted. If we assume that r s -  rs, = a / N  and that the initial 
fraction of mutants is #,,,,, then 

1 - -  e 2~rm's' 
Pr { fixation of mutant } = i - - - - ~  

If a = 0(1),  then the corresponding formula from the model given above is 

u s s ' N  

Pr{fixation of mutant } rs /rs , )  �9 - 1 1 - e ~ 
- " 1 - e  - - - - 7 -  

As will become clear from the subsequent discussion, the factor of 2 that 
distinguishes the two formulas does not qualitatively affect the conclusions 
that will be drawn from them. 
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3. THE A N A L O G Y  WITH S I M U L A T E D  A N N E A L I N G  

I turn now to a discussion of the analogy with simulated annealing. 
This algorithm, first proposed by Kirkpatrick etal., ~8~ has been used 
successfully on so many different applications that it can be considered a 
general-purpose optimization algorithm (see Ref. 9 for a partial list of 
applications). There is a wealth of description of the details of this 
algorithm in the literature. (s9) More relevant to the present discussion are 
the qualitative features of the algorithm, which are reflected in the way the 
algorithm is named. Annealing is a well-known method of hardening 
metals that involves slow cooling from the liquid state. Initially, the metal 
atoms move about rapidly in the metal due to random thermal activity. 
The metal atoms encounter optimum energy configurations--minima in 
this case and settle into them as the metal cools and its atoms lose energy. 
The atoms are more likely to be caught by an energy minimum that is 
"wide and deep" in phase space than by one that is "small and shallow." 
Therefore, the metal atoms are more likely to settle into a stable con- 
figuration (with close to maximum hardness) than a relatively unstable 
o n e .  

Although a "temperature" parameter is not an explicit part of the 
natural selection model, something like simulated annealing can be expec- 
ted to occur. Initially, a mutant organism can take over the population 
with relative ease, because the population contains only a small number of 
suboptimal organisms. The mutant organism will therefore be "accepted" 
relatively often, corresponding to the "high-temperature" regime in 
simulated annealing. As the number and sophistication of the organisms 
already in the population increase, a mutation will have more difficulty 
becoming fixed in the population. "Acceptance" of mutants therefore occurs 
less frequently as time passes, corresponding to the low-temperature regime 
in annealing. 

4. C O N V E R G E N C E  PROPERTIES OF THE M O D E L  

One implication of this analogy is that the same methods that have 
been used to study the convergence properties of simulated annealing can 
be used to study the convergence properties of the nonstationary Markov 
chain defined by the natural selection model. A priori, it is not so obvious 
whether this Markov chain will, from any initial state, find the state sM 
with the largest fitness parameter rM. There will almost certainly be local 
maxima in the function that maps  states to fitness parameters, because 
there will almost certainly be states other than sM whose fitnessparameters 
are higher than all nearby states.~ It is possible that the population can 
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increase sufficiently rapidly that it gets stuck in one of these local maxima. 
The analogous physical situation is quenching (rapid cooling), as opposed 
to annealing (slow cooling). 

These issues can be resolved via an application of some basic ideas 
about the long-time behavior of nonstationary Markov chains. Strictly 
speaking, our model may make no sense in the long-time limit, because the 
population size may diverge. However, it is unlikely that the long, but 
finite-time behavior of the model will differ significantly from that of the 
long-time limit. We therefore consider the limiting behavior of the model as 
an approximation. 

Two kinds of convergence of nonstationary Markov chains have been 
identifiedJ ~~ The first, known as weak ergodicity, requires that the process 
exhibit a loss of memory in the sense that, for all fixed to, 

lim min HfPu(to)PNtto + 1 ) " "  P u ( t )  - -  gPu(to)Puoo + 1 ) " "  PN(t ) I I  = 0 
t ~ o o  f , g  

Here, f and g are starting probability vectors, and PN~,) is the transition 
matrix for the Markov process at time t. Weak ergodicity is equivalent to 
the condition that I ~ _ , 0  Pu~o) approaches a matrix with identical rows at 
t ~ ~ .  For  finite-dimensional, stationary Markov chains, weak ergodicity 
and the more familiar concept known simply as ergodicity are equivalent. 
An alternative characterization of weak ergodicity that we need in order to 
prove our first convergence result requires the introduction of the delta 
coefficient 3(P) of the matrix P. This quantity is defined as 

1 
6(P) = - m a x  ~ IPu-Pkji 

2 i,k j 

where P = [Po]" It is a measure of how close a nonnegative matrix is to a 
matrix with identical rows. It is clear that the condition 

( ) )  lira ~ PN(O) =0 
t ~ o O  g 0 

for all to is sufficient, but not necessary for weak ergodicity. We use, 
instead, a necessary and sufficient condition that is stated, not in terms of 
b(P), but in terms of c~(P)_= 1 - 3 ( P ) ,  the so-called ergodic coefficient of 
Dobrushin. The statement is then as follows(l~ 

A nonstationary Markov chain is weakly ergodic iff there exist integers 
0 ~ t  0 < t ~ < t  2--- < t , <  . . . such that 

c~ PN~,~ = ~ (1) 
n = O  t n 

This theorem allows us to prove our first convergence result: 
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The nonstationary Markov  chain ~ /  describing the selection model 
given above is weakly ergodic if N( t )~<ln  t/(ln r M - - l n  rm), where rM and 
r m are the maximum and minimum fitness parameters, respectively. 
However, if N ( t )  > C l n  t/(ln r M - l n  rm), for some constant C, J / / c a n  fail 
to be weakly ergodic. 

We prove the first part  of this result by noting first that, if 
N( t ) = In t/(ln r M - In rm), then 

(rs/rs,) m , ' ' u -  1 
AN(S , S ' ) -  (r,/rs,)N 1 

t(,Us,s, In rs In rs')/(ln rM--  In rm) - -  1 

ton r s -  In rs')/(ln rM--  In rm) __ 1 

which is, to leading order as t ~ 0% 

= ~ t - - ( l - - U s j ) ( l n r ,  lnr~ ' ) / ( lnrM In rm), if r s>  rs, 

( 1 - t ~,.,,,,(ln r,,-- In r,)/(ln ,~--I~ "m), if r s, > rs 

Here, we ignore the unlikely possibility that r~.=rs,. We define the 
transition probability from s to s' to be 0 when #,,,, = 0 in accordance with 
the relationship N Ps,,' =fls, s'AN( S, S'). If #s,s' >0 ,  then 

In rs, - -  In r ,  i n  r , ,  - -  in r s 
< (1 -# , , , , )  < 1  (2) 

0 < #~.,, In rM -- In r m In r M -- In r,~ 

f o r  r s ,<  I 's , .  

We verify that (1) holds in the case where t, = n, assuming, without 
loss of generality, that the states are ordered such that r o =  
rM > rl > r2 > . . .  > r u = r m. We can then refer to each state by its index. 
Using this notation, we estimate the sum 

Y. Ip,j- pkjl = ~ [pu- pkjW + Ip,,-  p~,l + IP,~-- Pkk[ 
J j:ri,rk > U 

+ Z [ P o - P k j [  + ~ [ P ~ - P k j [  (3) 
j:ri > rj > rk j:r) > ri,r k 

Here, the notation j: ri, rk > rj means "sum over those states j with fitness 
parameter  r: less than min(r i ,  r~)." The notations j : r i > r j > r  k and 
j:  rj > ri, r~ are defined similarly. We have assumed that i < k, which we can 
do without loss of generality in computing the ergodic coefficient. 
Estimating each term shown above via (2), we see that, for sufficiently large 
t and sufficiently small/~, 
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IPo- pkjl = O(t ~) 
j : r i , rk  > rj 

] P . - P k ~ ] = I -  ~ #o-i~ki+O(t -b) 
j : r i  < r) 

Ipkk--p~k]=l - ~, #kj+O(t ~) 
j : r k  < rj 

IPo- PkjI = Z ~kJ+ O(t-~) 
j : r i  > ri > rk j : r i  > rj > rk 

IPa- p~jl = ~ 1~o- ~kjl + O(t-e) 
j : r i , rk  < rj j : r i , rk  < rj 

where 0 < a, b, c, d, e < 1. If we observe that 

(4a) 

(4b) 

(4c) 

(4d) 

(4e) 

j : rk  < rj j : r i  > rj > rk j : r i  < rj 

and if we let 2 -- min(a, b, c, d, e), then we see that 

j j : r i  < rj 

We then have the following estimate for the ergodic coefficient: 

1 {  } 
c~(PN(,))= - - - m a x  --#ik-- ~ [ ( # i j + # k j ) - - I ~ - # k j l ]  +O(t-~9 

2 i,k j : r i  < rj 

> ~ - m m # k s + ~ m i n  ~ [ ( / ~ + # k j ) - - l # s j - - # k j ] ] + O ( t  i.) 
2 i , k  i , k  j : r i  < ( i  

The quantities in square brackets are always nonnegative if the #'s are non- 
negative, so that the sum of these terms attains its minimum value of zero if 
we take i =  0 = M. We continue to employ the subscript M, rather than 
replacing it by zero, to emphasize that this subscript is associated with the 
maximum reproduction rate. It is clear that (1) holds if mini, k#ik>0. 
Indeed, if the matrix M = [#ik] is ergodic and l is the smallest integer such 
that the matrix M r =  [mik] is strictly positive, we could have taken tn = In, 
which would guarantee that mik>0  and the applicability of (1). It is, 
however, the nonergodic case that includes the possibility of local optima, 
so that we must consider this last case in more detail. We saw previously 
that each of the terms in (3) has a component of order O(t-)), where 
0 < 2 < 1. We can conclude that (1) still holds if we can show that the 
ergodic coefficient, which is approximately the sum of these leading order 
terms, is O(t-~), where 0 < e < 1. 
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To make this more detailed analysis, we define k* as that value of k 
such that the expression for the ergodic coefficient is minimized (The 
argument of the preceding paragraph implies that this definition can be 
made independent of i.). We then consider two subcases, depending upon 
whether k* is or is not equal to 1. [We assumed, without loss of generality, 
that i~< k. If i = k, 6(PN(t)) = 0.] We assume first that k* > 1 and reconsider 
(4b). We have, to leading order, 

[ P M M  - -  Pk*MI " ~  1 - -  I~M= t -  (1 - #M~)(ln rM --  In rz)/(ln r M In rm)  

where ~ is the index that maximizes the exponent (e.g., minimizes its 
absolute value). We note that the sum in which r i < r j  is empty when 
i = M = 0. We note further that the only constraint on c~ is that c~ > M = 0. 
We now reconsider (4c), which is 

IPk*k* -- PMk*I 

1 -  ~ ,u~.j--#k./~t ' - (1  # k * l ~ ) ( l n r k * - - l n r [ ~ ) / ( l n r M  lnrm) 

j : r k  < rj < r m 

q- ~ k * v  t #k*7(tn r ; , -  In rk*)/(ln rM - -  In rm) 

- -  # h, f k *  l -- ( 1 -- #Mk*)(In r M - -  In r k * ) / ( l n  r M - -  In  rm)  

where/~ is the index smaller than k* that maximizes the exponent in which 
it appears and 7 is the index greater than k* that maximizes the exponent 
in which it appears. We note that the exponent of the last term must be less 
than or equal to the exponent in (46) and that both terms containing these 
exponents have the same sign. Now, we reconsider (4a). We see that 

}~, IPMj- Pk*jl 
j : r M , r k *  ?> rj 

O ( t - -  rain(( 1 U M 6 ) ( l n r M - - l n r g , ) / ( l n r M - - l n r m ) , ( 1  # k * f O ( l n r k * - - l n r [ ~ ) / ( l n r M  In rm))) 

Once again, 6 < k* is chosen to minimize the appropriate exponent. The 
index /~ reappears because we need to maximize the same exponent as 
before. Thus, this sum eliminates at most one of the terms encountered 
previously. Upon reconsidering (4.4), we see that 

IPMj - Pk*jl 
J:r  i > rj > rk* 

~ ~ k * j  - -  ] ~ M e  t (  1 --/~m~)(ln rM - -  In r~)/(ln r M - -  In rm)  

j : r i >  r j >  rk* 

- -  b/k* 7 t--Uk*7(ln r~, In r k * ) / ( t n  rM In rm)  

822/49/5-6-10 
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Again, we repeat the index 7 to indicate that a term of this order has 
appeared before. Because this term appeared previously with the opposite 
sign, this second appearance cancels the first. It is clear, however, that that 
some terms with exponents between zero and unity remain in (3) under all 
circumstances. This is also true if k * =  1. Indeed, the only difference 
between this last case and the case considered previously is that the last 
sum considered is empty. Thus, (1) holds, as claimed. 

To establish the second part of the theorem, we must show that C can 
be chosen such that, for N( t )  > C In t/(ln rM -- In rm) , 

k = 0  t 

for all choices of the sequence 0 ~< to < tl < t2"" < t k ' "  ". Recalling that 

c~(PN(,))= - - - m a x  --#ik-- ~ [ ( # ~ + ~ k j ) - - I ~ u - ~ j l ]  +0(t-~') 
2 i,k j:rj < rj 

we obtain an upper bound on the ergodic coefficient by choosing i = M, to 
obtain 

1 
~X(PN(t) ) ~<-- rain [#~M + O( t - ; ' ) ]  

2 k 

A calculation similar to the one given above 
N( t )  > C In t/(ln rM - In rm) and mink #kM = 0, then 

PN(t) ~- P N ( ~ )  -~- O ( t - C ) ' )  

where 2 is defined as before. We then have 

shows that, if 

t k+l  
,k+~ O(t  c~.) H PN(t) = PN(oo) + 

t k =  t 

Because PN(ov) iS lower triangular, all of its powers are lower triangular. 
Hence, 

= O( t~  c~,) 
t 

We conclude that 

O0 

for any choice of sequences O < ~ t o < t ~ < t 2 . . .  < t k <  . . . i f  C >  1/2. II 



Model of Natural Selection 1023 

So far, we have established a criterion under which the process will 
"forget" its initial state. We now ask whether the process converges to a 
steady-state distribution. More formally, we consider an arbitrary 
probability distribution f over the set 5 P of possible states, and form 
vector/matrix products, 

tl  

f F[ Pu(t) = f(tl) 
t - - 0  

If there exists some probability vector 11 such that 

lira l i fet ' ) -  Hll --- 0 
t l ~ O O  

for all starting vectors f, then the inhomogeneous Markov chain J/// defined 
by the matricies {PN~,~} is said to be strong@ ergodic. We note that weak 
ergodicity is a necessary, but not sufficient condition for strong ergodicity. 

Our results for strong ergodicity are more dependent on the particular 
values of the ~ than our results for weak ergodicity. In particular, the 
strong ergodicity of Jg and the limiting probability distribution over states 
in 50 is dependent on whether PNr is ergodic. Our first result in this 
direction is the following: 

If PNr is ergodic, then the Markov chain defined by the sequence of 
transition matrices {PNr is strongly ergodic, and, as t-+ ~ ,  the state 
with the largest reproductive rate will be occupied with probability 1. 

The first part of this result follows easily from a standard result in the 
theory of nonstationary Markov chaindl~ 

If P ,  is a sequence of finite-dimensional stochastic matrices such that 
LIPn- P ~ 011 as n ~ ~ and if P is ergodic, then the Markov chain defined 
by the sequence of transition matrices {Pn} is strongly ergodic. 

In order to complete the proof of the theorem, we quote another 
standard result used in proving the theorem given above: 

If {P=} is a sequence of stochastic matrices such that l IP=-PII-+ 0 as 
n --, ~ ,  then, for each positive integer k, 

lIP,,+ 1P,~+ zP,,+ 3 " " P . + k - P I I - - , 0  
as n ~ O .  

We combine these results to conclude that, for any e > O, we can find n 
and k large enough so that 

e >  k l P . + I P = + 2 " ' - P . + k - W I I  + [ IPk-~H 

>t l iP .+  i P . + 2 - - .  P = + k  - Oil 
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where �9 = l imk_~ pk. Because P = PN(m)is lower triangular and ergodic, 
a trivial calculation shows that the row vectors of ~ are (1, 0, 0,..., 0), as 
claimed. 

We turn next to the case where Px(ov) fails to be ergodic. We state our 
final (and most surprising) result: 

If PN~o~) is not ergodic, then the Markov chain defined by the 
sequence of transition matrices {PN(t)} is strongly ergodic if N(t)<<. 
In t/0n r M - l n  rm), but the stationary distribution does not necessarily 
assign positive probability to the state with the largest reproductive rate. 

The proof of this result proceeds by choosing one of the relative 
maximum states s* and partitioning the set of all possible states 50 into 
three subsets, the singleton set consisting only of s* and the sets Y +  and 
5 e defined by 

This choice of partition allows us to assume that the Markov chain 
under discussion has only three states: all elements of 5e+ ("state 1"), the 
state s* ("state 2"), and all elements of 5 e ("state 3"). We make a slight 
abuse of notation and redefine #~ as the rate of mutation from state i in the 
newly defined Markov chain to state j. We abuse notation again by 
redefining ri to be the average reproduction rate for each type of organism 
in state i. We should compute the average at time t by using the probability 
distribution 

f P  s(to) P u(,o + 1 ) " "  PN(t) d~{f} 

where dP{f} is some a priori  distribution of starting states f. Fortunately, 
though, this complication is irrelevant to the thrust of the argument, 
because the average r for 5 f + and 6e-  is always between the largest and 
smallest r's associated with these states. A similar comment applies to 
the #'s. 

For notational convenience, we introduce the symbols 

212 = (1 --  #12) ll-~ r l - l n r 2  2 1 3 = ( 1 - - # 1 3 )  
r l--_ i--s r3' 

).23 = ( 1 -  #23)11 n r 2 - 1 n r 3  ).31=#31, ).32=#3zi n r 2 - 1 n r 3  
r I - I n  r3' rl - I n  r 3 

We can then repeat the computations given previously and we conclude 
that, to first order in all terms, 

1_#12t 2,2_1/13t-213 1.112t-).12 i113 t ,q3 \ 
PNIO = 0 1 - -  ]223 t --).23 [223 t 223 / 

,//31--//31 /-231 ~32--]132 l-)'3z l--/t3~--p3Z+p3~t X3'+p32t-a32/ 
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We show that this sequence of transition matrices is strongly ergodic by an 
application of the following theorem{~ ~): 

Let PN(t) be the one-step transition matrix of a discrete-time, non- 
stationary, finite Markov chain composed of C states. Suppose that 

lim P N ( t )  = P ~  and P N ( t )  = P ~  + V(t) 
t ~ o o  

where P ~  is a constant matrix. Suppose further that P ~  has exactly two 
ergodic, aperiodic components and a positive, but otherwise arbitrary 
number of transient states. Let m ~ and m (2) be the two eigenvectors that 
satisfy 

m P ~  = m  

which, by hypothesis, must be of the form 

m ( ' )=  (m] 1), m(2'),..., m(,l~ ), 0,..., 0 ) 
C #1 r epe t i t i ons  

and 

m { 2 } = (  0 ..... 0 m {2} m {2} m {2} 
u l + l  ~ Ul + 2 } ' " ~  U l + U 2  ~ 

u ~ n s  

0 ..... 0 ) 

C Ul -- u2 r epe t i t i ons  

Let II(t) satisfy H(t)  PN(t) = l - [ ( l ) ,  let 

u2 

~b(t)= ~ m l Z ) [ V ~ + i , l ( t ) +  . . .  + V~,+i,~,{,, 
i = 1  

+ V. ,+ , ,~ ,+.2+l ( t )  z~,+~2+ ,,~ + "'" + V ~ + , , c ( t )  z.,l] 

and let 

u2 

0(t)= E m l l ) [ v i . u , + , ( t ) +  " + vi..,+~2{,, 
i = l  

+ Vi,ul +.2+ 1(0 zul +.2+ 1.2 + "'" + Vi, c ( t )  Zc,2] 

where zjk = Pr{eventual transition from transient state j to ergodic com- 
ponent k}. If ~F+l [{b( t )+~( t ) ] - - -oo  and l i m t ~ I I ( t  ) exists, then 
lim,~ o~ l-B= 1PNtk) exists and is equal to the matrix whose rows are all 
lim, _~ ~ II(t). 
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We have 

and 

P ~  = 

o) 
1 0 

//3i #32 1 - -  #31 - -  #32 

_ u 1 2 t  212 #13t  )-t3 #12 t  ~.12 #13t-3q3 21 

V(t) = 0 - #23 t-~'~3 #23 t-"~3 

--/./31 t-231 - -#32  t-232 #31 t 231 + [/32 t -23  

It is then clear that  m ( l / =  (1, O, O) and that m (2)-- (0, l, 0). It is also easy 
to check that  the ith component  of 11 is q~i/(~bx + ~b2 + ~b3), where 

#31( 1 __ l--A31) 

till /./12/ , ,12+#13 t zl3 

~2 = #12 #31 (1 - t ~"') t ~-"+~" + #3___22 (1 - t ~-") t ~' ' 
#23 #12t--)'~2 + #13 t-,~3 #23 

q~3=l 

We conclude that  l i m , ~  II  always exists, but  that it is either (1, 0, 0) or 
(0, 1, 0), depending on whether  min(212,213) is greater than or less than 

"~23 �9 
Next,  we verify that  the rest of the conditions of the theorem hold, so 

that we can conclude that  l imt_  ~ I I ( t )  is, in fact, the limiting distribution. 
After an easy computat ion,  we see that  

Z31 ~ -  
#31 #32 

]231 -J- ~//32 ' Z32 --  ]231 -~-- ]./32 

~b(t) = V2,1 ~- V2,3z3,1 -~- #23/231 t -)'23 
,//32 "4"/A32 

#13/232 

#3~ + #32 

and 

O(t) = V1.2 + V1,3z3,2 = #12t -u~2 -~ 

It follows that  

- -  t ;.13 

[~b(t) + ~ ( t ) ]  = 
t=O 

| unless #12 = min(#13, #32) = 0. 
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However, this model does have "more or less" optimizing behavior for 
physically meaningful values of the parameters/~ and r. Recalling that rt is 
an average of all states in 5 ~ + and that r3 is an average over all states in 
5 p -  and assuming that 5 p + and ~ -  have no local maxima, then we know 
that rl ~ rM and r 3 ~ rs_ =maxs~s~ r s. Presumably, the r values for the 
different states are relatively closely and evenly spaced, so that 
in r M -  In r2 > In r2 - In r, . It will then be the case that )~12 > 223, and the 
stationary distribution is (1, 0, 0). If either 5 P+ or ~ -  has local maxima, 
we can apply the same line of argument to each local maximum in 
succession. It is in this sense that optimizing behavior occurs. 

5. C O N C L U S I O N S  

The obvious question to ask at this point is what these calculations 
have to do with real biological systems. While the present model is clearly 
an oversimplification, "historical accidents," reminiscent of the frozen-in 
crystal defects that arise from quenching, certainly abound in biological 
structures. Among the examples that come to mind are the human appen- 
dix, atavisms such as the "hen's teeth and horses toes" of Gould's book, (12) 
and the universality of the genetic code and basic biochemistry. Other 
examples are given in Ref. 1. 

Although our results are strictly true only in the limit as t becomes 
infinite, they should also be good approximations when t is large, provided 
that the basic assumptions of the model are not violated. Another context 
in which these assumptions might be justified is if the population is one of 
many weakly interacting populations residing at single points on a spatially 
extended domain. The foregoing analysis then describes the entire ensemble 
of populations in the domain. If we assume further that each population is 
of roughly the same size N(t), then it is indeed plausible that number of 
mutants or migrants is proportional to N(t), as posited before. Also note 
that, if r , - r s ,=O(1  ) then the birth-and-death process describing the 
struggle for survival of the mutant is essentially deterministic, expontial 
growth. We expect, therefore, that the time required for either the wild type 
or the mutant to die out is usually O(ln N). This observation lends support 
to the use of two time scales in the analysis. 

The results are reminiscent of the results obtained by the introduction 
of diffusion in chemical kinetics. When the diffusion proceeds rapidly 
relative to the other processes in the system (i.e., the diffusion coefficient is 
relatively large), then the uniform distribution is the unique stationary 
distribution. If the diffusion coefficient is made sufficiently small, there 
may be multiple steady-state solutions to the reaction-diffusion equations 
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govern ing  the system. Because high t empera tu res  facil i tate diffusion, this 
obse rva t ion  is fur ther  evidence that  N ( t )  in evolving bio logica l  systems and  
inverse t empera tu re  in physical  systems p lay  a s imilar  role. 

ACKNOWLEDGMENTS 

I thank  J . K .  Percus,  Alan  Sokal ,  and  Steve R. Whi te  for useful 
discussions.  

REFERENCES 

1. S. J. Gould, The Panda's Thumb. More Reflections in Natural History (Norton, New 
York, 1980). 

2. E. Weinberger, Ph. D. Thesis, Courant Institute of Mathematical Sciences, New York 
(1987). 

3. M. Eigen and P. Schuster, The Hypercycle: A Principle of  Natural Self-Organization 
(Springer, New York, 1979). 

4. J. Gillespie, Evolution 38(5):1116-1129 (1984). 
5. S. Karlin and H. Taylor, A First Course in Stochastic Processes (Academic Press, New 

York, 1981). 
6. W. Feller, Introduction to Probability Theory and Its Applications (Wiley, New York, 

1968). 
7. S. Karlin and H. Taylor, A Second Course in Stochastic Processes (Academic Press, New 

York, 1981). 
8. S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecci, Annealing, Science 220:671-680 (1983). 
9. E. H. L. Aarts and P. J. M. van Laarhoven, Philips J. Res. 40:193-226 (1985). 

10. D. Isaacson and R. Madsen, Markov Chains: Theory and Applications (Wiley, and Sons, 
New York, 1976). 

11. Basilis Gidas, J. Star. Phys. 39:73 131 (1985). 
12. S. J. Gould, Hen's Teeth and Horses Toes (Norton, New York, 1983). 


